
World Journal of Nano Science and Engineering, 2016, 6, 90-110 
Published Online June 2016 in SciRes. http://www.scirp.org/journal/wjnse 
http://dx.doi.org/10.4236/wjnse.2016.62010 

How to cite this paper: Sironmani, T.A. (2016) Therapeutic Potential of Neem Synthesized Silver Nanoparticles on Human 
Gastric Cancer Cells in Vitro. World Journal of Nano Science and Engineering, 6, 90-110.  
http://dx.doi.org/10.4236/wjnse.2016.62010 

 
 

Therapeutic Potential of Neem Synthesized 
Silver Nanoparticles on Human Gastric  
Cancer Cells in Vitro 
T. Anitha Sironmani 
School of Biotechnology, Madurai Kamaraj University, Madurai, India 

 
 
Received 7 April 2016; accepted 25 June 2016; published 28 June 2016 

 
Copyright © 2016 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Nanotechnology has shown significant promise in development of drugs and drug delivery sys-
tems that can overcome all limitations and address urgent needs to improve efficacy of diagnosis 
and therapy of various diseases including cancer. The functionalization with neem compounds as 
synthesis and capping agent had shown very high anticancer activities against Gastric cancer cells 
in vitro. The biochemical factors like albumin, glucose, and DNA concentrations were modulated 
along with Protease inhibitor and Catalase activates, the various cancer specific proteins like p53, 
GRD 70 - 78 kDa and other proteins of sizes 35 - 40 kDa corresponding to H+K+ATPase protein etc. 
The apoptic activity and antiproliferative activity were demonstrated with Gastric cancer cells in 
vitro. 
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1. Introduction 
Cancer is a molecularly heterogeneous hyperproliferative disorder marked by metastasis into the vital organs of 
the body through invasion and angiogenesis. Gastric cancer remains one of the most common cancers world-
wide and is typically associated with late-stage diagnosis and high mortality. According to the World Health 
Organization, 800,000 cancer-related deaths are caused by stomach cancer each year globally [1]. It is the fourth 
most common cancer worldwide, but the second leading cause of cancer-related deaths in the world.  

Cancer therapies are currently limited to surgery, radiation and chemotherapy. All three methods risk damage 
to normal tissues or incomplete eradication of the cancer. Improved insights into the etiology of cancer have led 
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to the identification of several novel and highly promising classes of anticancer therapeutics, such as growth 
factor receptor inhibitors, proteasome inhibitors and anti-angiogenic agents etc. [2]-[11]. Nanotherapies are in-
creasing in importance as vehicles for antineoplastic agents because of their potential for targeting and multi-
functionality, the multiple hallmarks of cancer pathogenesis, cellular and molecular alterations and associated 
targeted therapies [12]-[18]. 

The development of stimuli-responsive nanomaterials for cancer treatment has been developed [19]-[22]. 
Surface-enhanced Raman scattering, photoacoustic imaging in lymphangiography [23], photodynamic therapy 
(PDT) [24] and photothermal therapy (PTT) [25] have been actively investigated as applications in nanomedi-
cine. 

However, designing adequate therapies is difficult because of the complexity of cancer biology and the vast 
heterogeneity of tumors. Only a small fraction of tumor cells is highly sensitive to therapy, and even those cells 
can develop resistance and progress into a more aggressive disease. The aim of our research program is to de-
velop new Np for therapeutic interventions, and to further enhance of tumor therapy and reduce of clinically re-
levant side-effects. Molecular and genetic analysis allows physicians to detect, classify, monitor and treat cancer 
more effectively. 

Our results of comparative biochemical screening of green synthesized silver nanoparticles may provide the 
scientific reality for an optimized therapeutic application and it may also provide the basis to find new template 
structures for the development of next-generation drugs for patients with resistance to the first generation drugs.  

2. Methods 
2.1. Synthesis and Characterization of Ag-Nps  
One pot green Synthesis of silver nanoparticles (Ag-nps) using Neem leaf extract was done following the me-
thod of Kiruba et al. [26] The Ag-nps were primarily characterized by UV-visible spectroscopy, Atomic Force 
Microscopy and FTIR. 

2.2. Cell Culture  
Human gastric cancer cells AGS were kindly provided by Dr. Kumaresan, SBS, MKU University, and were 
maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum 
(FBS) and 1% antibiotic-antimycotic solution. Cells were grown to confluence at 37˚C and 5% CO2 atmosphere. 
All experiments were performed in 6-well plates, unless stated otherwise. Cells were seeded onto the plates at a 
density of 1 × 106 cells per well and incubated for 24 h prior to the experiments. The cells were washed with 
(phosphate buffered saline, pH 7.4) PBS and incubated in fresh medium containing different concentrations of 
Ag-nps suspended in water. 

2.3. In Vitro Cell Viability/Cytotoxicity Assay 
To evaluate the cytotoxicity of the Ag-nps, one hundred microliters of AGS cell suspension was dispersed in a 
96-well plate, giving a concentration of 5000 cells/well. The plate was pre-incubated for 24 hours in a humidi-
fied incubator (37˚C, 5% CO2), after which 10 µl of various concentrations of Ag-Np were added into the cul-
ture media in the plate. After the plate was incubated for a further 24 hours, Cells were harvested and Trypan 
blue was mixed. Then the blue stained dead cells were counted to see the cytotoxicity and viability. The dye ex-
clusion test is used to determine the number of viable cells present in a cell suspension. Besides, the trypan blue 
stain is considered as a simple way to evaluate cell membrane integrity and thus assesses cell proliferation or 
death.  

2.4. Invasion Assay 
The invasive potential of tumor cells was determined with an in vitro invasion assay. Briefly, cells were tested 
for their ability to penetrate the intestine in organ culture A suspension of tumor cells (1 × 106) in DMEM con-
taining 2% Rhodamine B. After 48 hrs of incubation at 37˚C in 95% air and 5% CO2, Then the organ culture 
media was removed and washed and treated with Ag Nps in medium only for experimental plate and plain me-
dium in control plate. Rhodomine staining was analyzed and photographed under an Olympus Fluoview FV 
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1000 Laser confocal microscope using the 380 nm excitation 560 nm emission. 
Antiproliferative efficacy on AGS cell line was determined using Ag-Np-Rhodamin B method after 48 hrs 

treatment. The fluorescence was measured in spectroflurimeter.  

2.5. Biochemical Analysis 
For all biochemical tests, following in vitro culture for 24 h, the gastric cancer cells, a total amount of 1 × 106, 
were grown in serum free medium Minimal essential medium without antibiotics with or without Ag-Np were 
collected, lysed and used for biochemical assays. Estimation of glucose was done following the method of King 
& Garner [27], The entire DNA was extracted using lysis buffer, phenol chloroform extraction and alcohol pre-
cipitation The concentration of the DNA was estimated by reading the absorbance at 260 and 280 nm using the 
UV spectrophotometer. The methyl orange method of Bracken and Klotz [28] was used for the estimation of al-
bumin. The absorbance of the solution measured photometrically at 480 nm. Catalase activity was estimated by 
reacting with H2O2 measuring the absorbance at 240 nm [29]. Trypsin inhibitor assay was measured using tryp-
sin as substrate in buffer phosphate buffer pH 7.6. The precipitate was pelleted and the absorbance was meas-
ured at 410 nm. Trypsin inhibitor activity was represented as unit of tryps in utilized. 

2.6. SDS-PAGE  
Samples containing 25 mg of protein from homogenized gastric cancer cells with and without nanotreatment 
were analyzed by SDS-PAGE (12.5%) under reducing conditions according to Laemmli [30].  

2.7. Statistics 
The results were determined by three independent experiments but with pooled samples. 

3. Results and Discussion  
Nanotechnology has shown significant promise in development of drugs and drug delivery systems that can 
overcome all limitations and improve efficacy of diagnosis and therapy of various diseases [31] [32]. Nanothe-
rapies, as carriers for antineoplastic agents with potential for targeting, and multifunctionality are increasing 
[12]-[18]. Phytochemicals which exhibit anti-carcinogenesis by affecting a spectrum of different cellular signal-
ing pathways have been well recognized in the scientific literature [33] [34]. 

Nanoparticles functionalized with anticancer phytochemicals, molecular and genetic analysis would help to 
treat cancer more preciously. Hao et al. [35] have reported neem components as potential agents for cancer pre-
vention and treatment. Preliminary experiments with neem synthesized silver nanoparticles (Ag-Np) were per-
formed against gastric cancer cells AGS in vitro to study the toxicity and efficiency. 

Colloidal Ag-NPs were prepared using Neem leaves to add drug effect to silver nanoparticles following the 
modified methods of [26] [36] [37]. The color change from yellow to brown suggested the formation of Ag-Nps. 
Studies indicated that the reducing phytochemicals in the neem (Azadirachta indica) leaf consisted mainly of 
terpenoids, nimbin and quercetin which served as capping and stabilizing agents in addition to reduction [36] 
[37]. 

A strong and broad surface plasmon peak was observed at 420 nm for the Ag-NPs prepared (Figure 1) and 
the particles were well dispersed without aggregation. The diameter by the spectral response of silver nanopar-
ticles was approximately 20 nm which was confirmed by AFM picture (Figure 2). Observation of the strong 
surface plasmon peak has been well known in the case of silver nanoparticles over a wide size range of 2 - 100 
nm [26] [38] [39]. 

Fourier transform infrared spectroscopy (FTIR), of synthesized silver nanoparticles is depicted in Figure 3. 
The broad band corresponding to the presence of the phenolic −OH occurs at 3600 - 3200 cm−1, maybe due to 
the polyphenols present in the plant extract. The activated neem leaves consist of mainly three dissimilar 
kinds of phenolic compounds such as 4-chlorophenol (4-CP), 4-nitrophenol (4-NP) [35]. The peaks at 1635 
cm−1 and 2073 cm−1 indicated the presence of aromatic ring C=C stretching alkyne bonds respectively. These 
bands denote stretching vibrational bands responsible for compounds like flavonoids and terpenoids [35] [40] 
adsorbed on the surface which are very abundant in Neem plant, while nanoparticles bond shows strong peak 
at 600 cm−1.  
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Figure 1. Optical density pattern of neem synthesized silver nanoparticles.            

 

 
Figure 2. AFM pattern of neem synthesized silver nanoparticles.                    

 

 
Figure 3. FTIR pattern of neem synthesized silver nanoparticles.                    

 
The FTIR spectrum of the un-reacted Azadirachta indica extract showed bands at 1742 and 1636 cm−1. The 

first band is characteristic of stretching vibrations of the carbonyl functional group in ketones, aldehydes and 
carboxylic acids. The second absorption at 1636 cm−1 corresponded to the amide I band. The intense broad ab-
sorbance at 3412 cm−1 is attributed to the O-H stretching modes of vibration in hydroxyl functional group in al-
cohols and N-H stretching vibrations in amides and amines. Moreover, the 1059 cm−1 band can be assigned to 
C-O stretching vibrations. The absorption peak at 2930 cm−1 corresponded to C-H stretching vibration modes in 
the hydrocarbon chains. The main difference between both spectra was that the treated extract exhibits peaks of 
less intensity for the amide band [35] [40]. 

In in vitro Ag Np viability and antiproliferative analysis (Figure 4), these nanoparticles had major effects on  
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Figure 4. Phase contrast microscopic picture of gastric cancer cells in vitro (a) 
untreated gastric cells (b) Silver nanoparticle treated gastric cancer cells.                    

 
the proliferation of Gastric Cancer cells and significantly decreased the viability to 5% - 10%, suggesting good 
cytotoxicity and antitumor activity. But normal cells treated with Ag-Nps showed no toxicity as observed by our 
earlier studies as well [26] [38] [39] [41]. 

Investigation of the antiproliferative effect of Ag-Np in the in vitro AGS model system confirmed that the 
Ag-NP could modulate the sensitivity of the gastric cancer cells. Ag-Np induces cytotoxicity selectively in tu-
mor cells indicating induction of apoptosis. Various nanoparticles were reported to suppress the growth and pro-
liferation of a wide variety of tumor cell lines of different tissue origins [42] [43]. Apoptosis helps to establish a 
natural balance between cell death and cell renewal in mature animals by destroying excess, damaged, or ab-
normal cells.  

The attachment of nanoparticles to the cell membrane caused aggregation of envelope protein precursors 
causing dissipation of the protein motive force. Silver nanoparticles also exhibited destabilization of the outer 
membrane and rupture of the plasma membrane thereby causing depletion of intracellular ATP and rupturing of 
cell membrane which may lead to cell death. It was also proposed that oxygen associated with silver reacts with 
the sulphydral (-S-H) groups on the cell membrane to form R-S-S-R bonds causing inhibition of respiration re-
sulting in cell death [44]-[47]. 

In addition, the anti-proliferative and apoptosis-inducing effects of neem components in which the Ag-nps 
were prepared are tumor selective as the effects on normal cells are significantly weaker [35]. 

Over the past decades, albumin has emerged as a versatile carrier for therapeutic and diagnostic agents, pri-
marily for diagnosing and treating diabetes, cancer, rheumatoid arthritis and infectious diseases. Hence in order 
to understand the role of albumin in cancer therapy, the concentration of albumin in Ag np treated and un treated 
gastric cancer cells in vitro were estimated (Figure 5) Serum free minimal essential medium was used for cul-
turing the cells and the whole lysate was used for analysis.  

It has also been shown that there is an increase in the albumin flux across the capillary wall, from the intra-
vascular into the extravascular compartments, in patients with cancer and sepsis [48]. There may have been al-
terations in the rates of albumin turnover with either a decreased or decreased synthesis [49]. Fleck et al. [50] 
have shown that the most important factor in altering serum albumin concentrations is the rate of exchange be-
tween blood and the extravascular space. They calculated that this rate of exchange is more than ten times the 
rate of synthesis and breakdown and suggested variation based on the stage of the tumour, the patient's age, the 
degree of tumour differentiation [48]-[53]. Those patients with low concentrations of C-reactive protein low 
concentrations of interleukin 6 (a key cytokine in the induction of hepatic synthesis of acute phase proteins) and 
higher serum albumin concentrations are more likely to respond to treatment and have a more prolonged surviv-
al [54] [55]. Alternatively, tumour necrosis factor may increase the permeability of the microvasculature, thus 
allowing an increased trans-capilliary passage of albumin [56] and hence a lowering of the serum albumin con-
centrations.  
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Figure 5. Concentration of albumin in control gastri cancer cells and silver nano- 
particle treated cells.                                                    

 
Most human tumors display some forms of genomic instability, including DNA sequence alterations, chro-

mosomal rearrangements, aneuploidy or gene amplifications. These alterations have the potential to affect the 
function of cell growth-related genes, such as proto oncogenes and tumor suppressor genes, which are associated 
with the malignant transformation of cells. Figure 6 shows the DNA content of the Ag np treated and untreated 
Gastric cancer cells in vitro. 

Apoptosis is the most important pathway through which many compounds exert their antitumor effects. It has 
been shown that rhein can induce apoptosis by increasing nuclear condensation and DNA fragmentation [57], 
activating caspase-8, -9, and -3 [57], increasing the levels of Fas, p53, p21, and Bax, but decreasing the levels of 
Bcl-2 [58]. 

The reduction in the DNA level may be due to. the damage in cell function and development which includes 
oxidative modification of proteins to generate protein radicals [59], initiation of lipid peroxidation [60]-[62], 
DNA-strand breaks, modification to nucleic acids [63], modulation of gene expression through activation of re-
dox-sensitive transcription factors [64] [65] and modulation of inflammatory responses through signal transduc-
tion [66], leading to cell death and genotoxic effects [67]-[72]. The gastric mucosal integrity is maintained 
through a balance between the proliferation and apoptosis of mucosal cells. DNA damage derived from oxida-
tive stress is another tumorigenic factor attributed to H. pylori infection [73]. 

Vitamin C is capable of inducing gastric cancer cell growth inhibition, which may be related to the effects on 
cell protein and DNA synthesis. Extracts of neem has natural substances such as limonin, azadirachtin, kaemfe-
role, beta-carotene and ascorbic acid. In addition to combating oxidative damage in the body, these phytochem-
icals can help enhance the immune system, reduce inflammation, and interfere with the growth of cancer cells 
[74]-[77]. 

The glucose concentration of the Ag-Np treated Gastric cells was three fold higher than the untreated Gastric 
cancer cells in vitro (Figure 7). The interactions between cancerous cells and tumor microenvironment during 
the courses of multistep tumorigenesis play a critical role in modulation of tumor growth, metabolism and me-
tastasis to distant sites [78]-[80]. 

Enhanced glucose utilization is a prominent and fundamental change in many tumors irrespective of their 
histological origin and the nature of mutations, first observed by [81]. The extent of increase in glucose utiliza-
tion measured by FDG-PET has been correlated with the degree of malignancy in some of the tumors [82].  
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Figure 6. DNA concentration of silver nanoparticle untreated and treated gastric 
cancer cells.                                                              

 

 
Figure 7. Concentration of glucose in control gastric cancer cells and silver 
nanoparticle treated cells.                                                 

 
Glucose utilization is also inversely correlated with treatment response in a number of tumors, while changes in 
tumor glucose utilization during the first weeks of chemotherapy are significantly correlated with patient out-
come [83] [84]. Therefore, glucose utilization appears to be a useful metabolic marker for diagnosis, prognosis 
and prediction of tumor response to a variety of therapies [85].  
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It was reported that oxidative stress and reactive oxygen species (ROS) were found to be crucial in a variety 
of diseases such as diabetes, cancer etc. [86]. Catalase is a heme enzyme that has a predominant role in control-
ling hydrogen peroxide concentration in human cells, by converting H2O2 into H2O and O2. With superoxide 
dismutase (SOD) and glutathione peroxidase, catalase constitutes a primary defense against oxidative stress and 
may provide resistance to the effects of radiation and chemotherapy [87]. 

To know the effect of Ag-nps in oxidative stress, the catalse activity was measured. As shown in Figure 8, 
the catalase activity was lower in Ag-nps treated cancer cells than the untreated control gastric cancer cells in 
vitro since the antioxidant enzymes are inducible, the levels of the antioxidant enzymes reflect the levels of their 
substrates, the active oxygen species [88] [89]. Reactive oxygen species (ROS) synthesis in gastric cells [90] 
[91], and ROS enhances the expression of oncogenes, stimulates cell proliferation and plays an important role in 
all stages of carcinogenesis [92]. NF-kB was also involved in oxidativestress- mediated cell injury. A variety of 
antioxidants have been demonstrated to inhibit the activation of NF-κB [93], and micromolar concentrations of 
H2O2 could activate NF-κB, suggesting that reactive oxygen may act as a second messenger in the activation of 
transcription factor NF-κB [94]. The suppression of NF-κB signaling pathway is, at least partially, involved in 
the anticancer functions of neem components [35].  

Proteases from all catalytic classes positively or negatively affect cancer progression and metastasis through 
complex and highly regulated processes that involve cleavage of cell adhesion molecules, growth factors, cyto-
kines, or kinases [95]-[99]. The relationship between serum tumor-associated trypsin inhibitor levels with gastri 
cancer cells with and without Ag Np treatment was studied in vitro. Figure 9 shows more than two fold in-
creased level of protease inhibitor. 

The results of this study indicated that trypsin could be considered as a growth factor and the high expression 
of trypsin inhibitor unravel a new mechanism whereby serine proteases control colon tumours. They are also 
involved in tissue remodeling during development and in tissue penetration as they induce the migration of mo-
nocytes and cancer cells [100]. The lysosomal cysteine proteases, such as cathepsins B, H, and L, are broadly 
distributed in tissues and believed to be responsible for a major proportion of normal protein turnover and pa-
thological processes.  

Upregulation of the protease inhibitor, contributes to cell proliferation inhibition in gastric cancer [101]-[103]. 
Tumour-associated trypsin inhibitor expression has been associated with impaired survival in several forms of 
cancer [104]-[106], but not in gastric cancer, where it is believed to have a natural function of protecting the 
mucosa from proteolytic degradation [107]-[111]. The protease-activated receptor-2 (PAR-2) and trypsin play a  
 

 
Figure 8. Estimation of catalase activity in control gastric cancer cells and in silver 
nanopartice treated experimental cells.                                         
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Figure 9. Trypsin inhibitor concentration in Silver nanoparticle untreated and 
treated gastric cancer cells.                                                   

 
role in cell proliferation in human colon cancer cell lines [112]. 

Stomach cancer cell lines frequently secreted active trypsin, suggesting that they produced an endogenous ac-
tivator of trypsinogen, most likely enterokinase. Trypsin (ogen) was frequently expressed at high levels in sto-
mach and colon cancers, but scarcely in breast cancers. In the stomach cancers, the trypsin immunoreactivity 
was higher. These results support the hypothesis that tumor-derived trypsin is involved in the malignant growth 
of tumor cells, especially stomach cancer cells [113]. And hence, the level of trypsin inhibitor was found to be 
high in Ag-Np treated gastric cancer cells. 

Knowledge about cancer biomarkers will provide great opportunities for improving the management of cancer 
patients by enhancing the efficiency of detection and efficacy of treatment. Emerging evidence indicates that 
most tumor-associated biomarkers are cellular proteins whose aberrant regulation of function could be linked to 
malignancy [114] [115]. 

The protein profile of untreated and Ag Np treated Gastric cancer cells were analyzed on 12.5% PAGE and 
the results are shown in Figure 10. The highly expressed proteins of molecular weight 78, 66, 53, 50, 40, 29, 25, 
23 and other minor peptides were found to be in high concentration in control untreated gastric cancer cells.  

Many stomach, colon, and breast cancer cell lines secreted trypsinogens-1 and/or -2, as well as an unidentified 
serine proteinase of about 70 kDa, into culture medium. These results support the hypothesis that tumor-derived 
trypsin is involved in the malignant growth of tumor cells, especially stomach cancer cells [113]. HSPA5 (heat 
shock 70 kDa protein and glucose-regulated protein 78 kDa) gene is expressed in all nucleated cells, in particu-
lar in thyroid-, lung-, smooth muscle-, liver-, and various cells of the immune system [116]. Glucose regulated 
protein 78 (GRP78) is overexpressed in colorectal carcinoma and regulates colorectal carcinoma cell growth and 
apoptosis. The HER2 receptor belongs to the epidermal growth factor (EGF) receptor (EGFR) family of tyrosine 
kinase receptors expressed by a variety of tumor cell lines that appear to drive tumorigenic pathways, including 
proliferation, invasion, adhesion, and metastatic spread [117] [118]. The 78 - 70 kDa, 25 and 23 kDa protein 
observed in control untreated gastric cancer cells may be the 70-kDa serine proteinases. 25- and 23-kDa active 
trypsin observed in various human cancer cell lines [113] p53 protein a tumor suppressor and transcription fac-
tor is a 53-kDa protein present in humans and is encoded by the TP53 gene It is a critical regulator in many cel-
lular processes, including cell signal transduction, cellular response to DNA damage, genomic stability, cell 
cycle control, and apoptosis When tumors develop, point mutations at the TP53 gene can lead to overexpression 
of p53 proteins, which contribute to continuous cell division and canceration. Overexpression of p53 has been 
reported in 60% of laryngeal carcinomas, 37% of hypopharyngeal carcinomas, and 52% of tongue carcinomas. 
With the mortality and disintegration of tumor cells, p53 protein released from cancer cells will enter into the 
circulation.  
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Figure 10. 12.5% SDS-PAGE showing the protein profile of gastric 
cancer cells (lane 1) and silver nanoparticle treated cells with 
different concentrations (lanes 2 & 3).                                 

 
Although p53 is not a typical cancer-specific antigen, its central role in the control of cell growth and apopto-

sis and frequent mutations in tumours make p53 a unique target for cancer therapy [119]. Curcumin down-re- 
gulates the expression of p53 as well as the survival genes egr-1, c-myc, and bcl-XL in B cells [120]. 

The 40 - 50 kDa glycoprotein was consistently expressed in the intestinal type carcinoma. An albumin asso-
ciated 40 - 50 kDa glycoprotein was previously shown in mucus gels in gastric cancer. Secreted gastric mucins 
are large O-glycosylated proteins of crude mucus gels identified as α-1-Acid Glycoprotein which are aberrantly 
expressed in malignancy [121]. The H+/K+-ATPase enzyme with subunits 35 kDa and 114 kDa of gastric pa-
rietal cells exchanges luminal K+ for cytoplasmic H+ and is a specialized proton pump primarily responsible for 
gastric acidification, leading to the development of gastric enterochromaffin-like (ECL) cell carcinoids in rats 
[122]. 

Cancer markers CA 27 - 29 are found on Cancers of the colon, stomach, kidney, lung, ovary, pancreas, uterus, 
and liver may also raise CA 27 - 29 levels. Noncancerous conditions associated with this substance are first tri-
mester pregnancy, endometriosis, ovarian cysts, benign breast disease, kidney disease and liver disease [119].  

The suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of 
neem components adsorbed with additive effect of Ag-Np Importantly, the anti-proliferative and apoptosis-in- 
ducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In 
addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of 
certain cancer chemotherapeutic agents [35]. 

To evaluate the effect of Ag Np viability/cytotoxicity assay was done using dissected bit of mice intestine in 
vitro as described in methods and were analysed using confocal microscopy (Figure 11). Representative images 
were selected from the results of one set experiment among three experiments. Higher apoptosis rate, was de-
tected in nanotreated compared with control gut tissue co-cultured with Gastric cancer cells. The gastric mucosal  
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Figure 11. Invasion assay of control and silver nanoparticles treated Rhodamine B 
labeled gastric cancer cells infected  mice intestine in organ culture Confocal 
microscopic view.                                                        

 
integrity is maintained through a balance between the proliferation and apoptosis of mucosal cells. 

Chitosan/heparin nanoparticle-encapsulated CdtB preferentially inhibited the proliferation of cells derived 
from gastric cancer. Treatment of cells with nanoparticle-encapsulated CdtB enhanced cell-cycle arrest at G2/M, 
followed by apoptosis. Moreover, our data showed that the mechanism for nanoparticle-encapsulated CdtB-in- 
duced cell death was mediated by ATM-dependent DNA damage checkpoint responses [18]. 

The glandular organization of this tissue, is also critical to its role as a barrier to a range of environmental 
noxious and immunogenic molecules [123]-[125], During an established infection, the vast majority of H. pylori 
cells (about 70%) are found in the mucus layer of the superficial gastric mucosa, either motile or adhered to the 
heavily glycosylated secreted mucins.  

Most stomach cancers are adenocarcinomas, which develop in the cells of the mucosa. However, stomach 
cancer can develop anywhere in the organ and spread to other parts of the body by growing beyond the stomach 
wall, entering the bloodstream or reaching the lymphatic system. 

Gastric cancer cells labeled with rhodamine b was added to mice intestine in organ culture and one set was 
treated with nanoparticles and the other set served as control (Figure 12) The fluoresence spectrometric analysis 
revealed the reduction in fluorescence and very less accumulation of Ag-nps and less invasion of gastric cancer 
cells revealing the therapeutic potential of Ag np (Figure 12). 

The nanoparticle localisation in intestine cultured with and without Gastric cancer cells by the enhanced per-
meability and retention effect. Ag-nps preferentially accumulated in the tumour mass by extravasation through 
the fenestrated tumour interstitium Tumor cells, Kupffer cells, and mononuclear phagocyte system have higher 
phagocytotic rates for uptaking nanoparticles than other tissue cells. Therefore, the Ag-nps could be targeted to 
tumor, the liver, or spleen [126].  

Figure 13 shows the comparison of various factors in gastric cancer cells treated with Ag-nps. Except glucose 
and antitrypsin concentrations (4 fold and 3 fold respectively) all other biochemical and molecular factors were 
down regulated in Ag Np treated gastric cancer cells compared to the un treated control gastric cancer cells. Al-
bumin concentration was reduced 6 folds. DNA concentration and catalase activity were down regulated 4 folds 
and 3 folds respectively (Figure 13).  

Mechanisms underlying this fundamental alterations in metabolism during carcinogenesis include mutations 
in the mitochondrial DNA resulting in functional impairment, oncogenic transformation linked upregulation of 
glycolysis, enhanced expression of metabolic enzymes and adaptation to the hypoxic tumour micro-milieu in 
case of solid tumours [81]. These abnormalities, which include telomerase activation, genetic instability, and 
abnormalities in oncogenes, tumor suppressor genes, cell-cycle regulators, cell adhesion molecules, and DNA 
repair genes, could be effective markers in the molecular diagnosis of gastric cancer. 

Apart from being an excellent anti-bacterial agent, Ag-nps had anti-inflammatory properties. The potential 
anti-inflammatory action of silver nanoparticles has been suggested in various studies described previously (26, 
38, 39, 41). Others have also demonstrated the anti-inflammatory effects of silver nanoparticles using a porcine  
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Figure 12. Invasion assay-Fluorescence spectroscopic pattern of Rhodomin B 
treated control gastric cells (a) and silver nanoparticles treated gastric cancer cells 
(b) in organ culture.                                                        

 

 
Figure 13. Comparison of various biochemical parameters showing fold difference 
silver nanoparticle treated gastric cancer cells with un treated control gastric cancer 
cells.                                                                        

 
model of contact dermatitis [127] and in a rat model of ulcerative colitis [128]. Proteins, known as matrix me-
talloproteinases (MMPs), help cancer cells escape their original locations by cutting through proteins of the 
extracellular matrix, which normally holds cells in place [129]. 

Circulating tumour DNA (ctDNA) as a noninvasive modality to assess evolution of solid malignancies, this is 
DNA originating from cancer cells, carrying tumour-specific genomic alterations, that is present as short cell- 
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free fragments in body fluids such as blood plasma [130]. 
Active oxygen species pose a severe threat to cells, and are probably responsible for cellular damage, tissue 

damage, DNA modifications, and many human diseases [131]. Antioxidant enzymes are the superoxide dismu-
tases (SOD), catalases (CAT), and peroxidases, of which glutathione peroxidase (GPx) appears to be the most 
important in mammalian cells. free radicals, particularly oxygen radicals, play an important role in the complex 
course of multistep carcinogenesis. Much of the evidence (Figure 13) shows that antioxidants scavenge free 
radicals directly, or interfere with the generation of free radicals-mediated events, inhibit the neoplastic process 
[132]-[135]. Overproduction of ROS can induce oxidative stress, resulting in DNA-strand breaks, modification 
to nucleic acids [49] [63], modulation of gene expression through activation of redox-sensitive transcription 
factors [64] [65], and modulation of inflammatory responses through signal transduction [66], leading to cell 
death and genotoxic effects [67] [69].  

The protease-activated receptor-2 (PAR-2) and trypsin play a role in cell proliferation in human colon cancer 
cell lines [112]. Cysteine proteases are released as a response to several normal and pathological processes, in-
cluding inflammation and tumorigenesis [103] and their proteolytic activities are regulated by potent cystatin in-
hibitors. Cystatins play a role in the protection of tissues from inappropriate proteolysis, and thus the control of 
protease activity by cystatins is essential to organisms.  

Similar relationship between serum tumor-associated trypsin inhibitor levels and clinicopathological parame-
ters in patients with gastric cancer was reported by Kemik et al. [136] Recent exploitation of apoptosis pathways 
towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the 
development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors 
[137]. 

Apoptotic cell death induced by Poncirin in AGS cells was mediated by Fas death receptor followed by the 
caspase-dependent extrinsic apoptosis pathway [138]. In several previous studies, it was found that some phy-
tochemicals induce apoptosis by alteration of MMP in various cancer cells [139] [140].  

It can be deduced that upon the microenvironmental stress, such as hypoxia, glucose deprivation and inflam-
mation, the intracellular induced- or extracellular secreted-GRP78 is able to inhibit the function of p53 protein, 
facilitating genome instability and the related mutations (Figure 11).  

Glucose regulated protein GRP78 can promote the unfolded or misfolded proteins return to normal conforma-
tion, and then protect cells by suppressing oxidative damage and stabilizing calcium homeostasis [72] [116] 
[134] [141]. 

Curcumin treatment impairs both Wnt signaling and cell-cell adhesion pathways, resulting in G2/M phase ar-
rest and apoptosis in HCT-116 cells. Curcumin preferentially arrested cells in the G2/S phase of the cell cycle 
[142] [143]. 

Poor pharmacokinetic and biodistributional profile upon intravenous administration are the important draw-
backs with these second-generation anticancer agents as with the first-generation DNA-damaging counterparts. 
Multifunctional nano formulations aim to improve the balance between the efficacy and toxicity of systemic an-
ticancer therapy. The currently approved nanoparticle systems have in some cases improved the therapeutic in-
dex of drugs by reducing drug toxicity or enhancing drug efficacy. The next generation of nanoparticle systems 
may have targeting ligands such as antibodies, peptides, or aptamers, which may further improve their efficacy 
or reduce their toxicities [12] [144] [145]. 

Gold nanostars (GNSs), as one kind of emerging nanomaterial, have been actively investigated as an applica-
tion in nanomedicine, including surface-enhanced Raman scattering, photoacoustic imaging in lymphangiogra-
phy [23] photodynamic therapy (PDT) [33], and photothermal therapy (PTT) [1] [25] [34] [146] [147]. 

Extracts from the neem tree are packed with beneficial natural substances such as limonin, azadirachtin, 
kaemferole, beta-carotene and ascorbic acid. In addition to combating oxidative damage in the body, these hy-
tochemicals can help enhance the immune system, reduce inflammation, and interfere with the growth of cancer 
cells. Neem leaf extracts can cause apoptosis to suppress the proliferation of leukemia and melanoma cell lines 
[35]. 

Silver nanoparticles functionalized with anticancer neem phytochemicals would help to treat cancer more 
preciously in addition to the bactericidal effect, their unique physical, chemical properties, and ease of synthesis 
and surface modification, biodistribution and biosafety [26] [38] [39] [41]. Ag Nps hold the most promise for 
achieving optimal targeting all cancers including brain cancer as they can bypass the BBB and improve the dis-
tribution within a brain [148]-[150]. Multifunctional therapeutics where a nanoparticle serves as a platform to 
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facilitate its specific targeting to cancer cells and delivery of a potent treatment, minimizing the risk to normal 
tissues over coming all problems of cancer therapy. 
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